This offering centers on the precise measurement of proteins that have undergone alterations after their synthesis. These changes, which can include phosphorylation, glycosylation, or ubiquitination, significantly impact protein function, interactions, and stability. An example involves quantifying the level of phosphorylation on a specific protein involved in cell signaling to understand its activation state.
Accurate measurement of these modified proteins is essential for understanding complex biological processes and disease mechanisms. The ability to precisely quantify these changes allows researchers to identify potential drug targets, monitor treatment efficacy, and gain deeper insights into cellular regulation. Historically, these analyses were technically challenging, but advancements in mass spectrometry and antibody-based techniques have enabled more sensitive and reliable quantification.